Gradient Maximum Principle for Minima

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gradient Maximum Principle for Minima

We state a maximum principle for the gradient of the minima of integral functionals I (u)G Ω [ f (∇u)Cg(u)] dx, on ūCW 1,1 0 (Ω ), just assuming that I is strictly convex. We do not require that f, g be smooth, nor that they satisfy growth conditions. As an application, we prove a Lipschitz regularity result for constrained minima.

متن کامل

The Pontryagin Maximum Principle

Theorem (PontryaginMaximum Principle). Suppose a final time T and controlstate pair (û, x̂) on [τ, T ] give the minimum in the problem above; assume that û is piecewise continuous. Then there exist a vector of Lagrange multipliers (λ0, λ) ∈ R × R with λ0 ≥ 0 and a piecewise smooth function p: [τ, T ] → R n such that the function ĥ(t) def =H(t, x̂(t), p(t), û(t)) is piecewise smooth, and one has ̇̂ ...

متن کامل

Stochastic maximum principle

The Pontrjagin maximum principle solves the problem of optimal control of a continuous deterministic system. The discrete maximum principle solves the problem of optimal control of a discrete-time deterministic system. The maximum principle changes the problem of optimal control to a two point boundary value problem which can be completely solved only in special tasks. It was probably the reaso...

متن کامل

Simplified multitime maximum principle

Many science and engineering problems can be formulated as optimization problems that are governed by m-flow type PDEs (multitime evolution systems) and by cost functionals expressed as multiple integrals or curvilinear integrals. Our paper discuss the m-flow type PDEconstrained optimization problems, focussing on a simplified multitime maximum principle. This extends the simplified single-time...

متن کامل

Fractional convexity maximum principle∗

We construct an anisotropic, degenerate, fractional operator that nevertheless satisfies a strong form of the maximum principle. By applying such an operator to the concavity function associated to the solution of an equation involving the usual fractional Laplacian, we obtain a fractional form of the celebrated convexity maximum principle devised by Korevaar in the 80’s. Some applications are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Optimization Theory and Applications

سال: 2002

ISSN: 0022-3239,1573-2878

DOI: 10.1023/a:1013052830852